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Phase transition of a two-dimensional binary spreading model
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We investigated the phase transition behavior of a binary spreading process in two dimensions for different
particle diffusion strengths (D). We found thatN.2 cluster mean-field approximations must be considered to
get consistent singular behavior. TheN53,4 approximations result in a continuous phase transition belonging
to a single universality class along theDP(0,1) phase transition line. Large scale simulations of the particle
density confirmed mean-field scaling behavior with logarithmic corrections. This is interpreted as numerical
evidence supporting the bosonic field theoretical prediction that the upper critical dimension in this model is
dc52. The pair density scales in a similar way but with an additional logarithmic factor to the order parameter.
At the D50 end point of the transition line we found directed percolation criticality.
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I. INTRODUCTION

The study of nonequilibrium phase transitions in syste
with absorbing phases is an active area of research in st
tical physics with applications in various other fields such
chemistry, biology, and social sciences@1#. The classification
of the types of phase transition found in these systems
universality classes is, nevertheless, still an incomplete t
The directed percolation~DP! universality class is the mos
common nonequilibrium universality class@2,3#. Directed
percolation was indeed found to describe the critical beh
ior of a wide range of systems, despite the differences
their microscopic dynamic rules. However, the presence
some conservation laws and/or symmetries in the dynam
has been found to lead to other universality classes@4#.

The pair contact process~PCP! @5# is one of the models
whose~steady state! critical properties belong to the DP un
versality class. If the model is generalized to include sin
particle diffusion~PCPD or annihilation/fission model@6,7#!,
a qualitatively distinct situation arises since states with o
isolated particles are no longer frozen and the question
been raised as to whether this would modify the universa
class. A field theoretical study of the annihilation/fissi
model was presented long ago@7#. Unfortunately, it relies on
a perturbative renormalization group analysis which bre
down in spatial dimensionsd<2 so that the active phase an
the phase transition are inaccessible to this study. The u
critical dimensiondc is 2 for this bosonic theory, where mu
tiple site occupancy is allowed, contrary to the usual latt
models and Monte Carlo simulations. A fermionic fie
theory is not available but it is expected to lead todc51
@8#—therefore mean-field predictions, with some logarithm
corrections, would be seen ind51 if the latter is the correc
theory.

Monte Carlo, coherent anomaly@9,10#, and density matrix
renormalization group~DMRG! studies@6,11,12# of the 1
2d PCPD model proved to be rather hard due to very lo
relaxation times and important corrections to scaling. Sev
hypotheses have been put forward in order to classify
critical behavior: single type@6,11# versus two regions o
1063-651X/2002/65~5!/056113~7!/$20.00 65 0561
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different behavior@9#, parity conserving class@6#, mean-field
behavior, diffusion-dependent exponents. Some related m
els were also studied@13–18# with the aim of identifying the
relevant features that determine the critical properties. T
matter is not yet fully clarified, but it seems most likely th
this system belongs to a distinct, not previously encounte
universality class. Parket al. @15# have also pointed out tha
the binary character of the particle creation mechanis
rather than parity conservation, might be the crucial fac
determining the type of critical behavior of the PCP
Higher dimensional studies of PCPD-like models are th
necessary in order to clarify their universal properties a
thus contribute to a full understanding of nonequilibriu
phase transitions.

In the present work we studied a two-dimensional mo
where particle diffusion competes with binary creation a
annihilation of pairs of particles. In its nondiffusive limi
this parity-conserving version of the PCPD allows for
interpretation in terms of aunary process ofparticle pairs.
The model is described in the following section. Clus
mean-field studies are presented in Sec. III and Monte C
simulations are discussed in Sec. IV. Finally we summar
and discuss our results.

II. THE MODEL

The sites of a square lattice of sideL are either occupied
by a particle~1! or empty~0!. The following dynamic rules
are then performed sequentially. A particle is selected at r
dom, and~i! with probability D is moved to a~randomly
chosen! empty neighbor site; with the complementary pro
ability, and provided the particle has at least one occup
neighbor, then~ii ! the two particles annihilate with probabi
ity p or ~iii ! with probability 12p two particles are added a
vacant neighbors of the initial particle. The selection
neighbors is always done with equal probabilities; the upd
ing is aborted and another particle is selected, if the cho
sites are not empty/occupied as required by the process
reaction-diffusion language one has

AB↔
D

BA, 2A →
p~12D !

B, 2A →
~12p!~12D !

4A. ~1!
©2002 The American Physical Society13-1
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It is clear that, in the absence of particle diffusion (D50),
only sites that belong to a pair of occupied neighbors
active. In terms of pairs—taken as particle doublets—
have a unary process where doublets are destroyed at rp
or create new doublets at rate 12p; the number of offspring
is greater than or equal to 2—because new pairs may als
formed with next nearest neighbor particles—and parity
the number of doublets is not conserved. This is similar
the PCP@22# and one expects to see a phase transition, in
DP universality class, between an active phase with a fi
density of pairs~at low p) and an absorbing phase witho
pairs ~for p.pc).

When particle diffusion is included, one has a quali
tively different situation, since configurations with only pa
ticles without neighbors are no longer absorbing—the o
absorbing states are the empty lattice and the configurat
with a single particle. There is parity conservation in ter
of particles and the creation and annihilation mechanisms
binary. The nature of the phase transition, expected to oc
at some valuepc(D), is investigated below.

III. CLUSTER MEAN-FIELD CALCULATIONS

We performedN-cluster mean-field calculations@19,20#
for this model. Since the details of the dynamics will n
influence the values of the mean-field critical indices,
have considered a simpler one-dimensional version of
model where the creation takes place at the nearest and
nearest sites to one side of the parent particle.

At the site (N51) level, the evolution of the particle
densityr ~denoted byn in @6#! can be expressed as

]r

]t
522pr212~12p!r2~12r!2 ~2!

which has the stationary solution

r~`!5
p211Ap2p2

p21
~3!

with pc51/2. The pair densityr2 (c in the notation of@6#! is
just the square ofr at this level. Forp<pc the densities
behave as

r~`!}~pc2p!b, ~4!

r2~`!}~pc2p!b2, ~5!

with b51 andb252 leading order singularities. At the criti
cal point

]r~p51/2!

]t
52~r/221!r3, ~6!

which implies that the leading order scaling is

r~ t !}t2a, r2~ t !}t2a2, ~7!

with a51/2 anda251, while in the absorbing phase

r~ t !}t21, r2~ t !}t22. ~8!
05611
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All these exponents coincide with those found for the PC
model @6# at the same level of approximation.

In the pair (N52) approximation, the density of ‘‘1’’ (r)
and the ‘‘11’’ pair density (r2) are independent quantities
One can easily check that the evolution of particles can
expressed as

]r

]t
522p~12D !r212~12D !~12p!

3r2~r2r2!
122r1r2

r~12r!
~9!

while the evolution of pairs

]r2

]t
52p~12D !r2

2r21r

r
22D~r2r2!

r22r2

r~12r!

1~12D !~12p!r2~r2r2!

3~122r1r2!
22r2r2

r~12r!2
. ~10!

Owing to the nonlinearities, we could not solve these eq
tions analytically and had to look for numerical solution
The critical indices thus obtained at different diffusion rat
D are shown in Table I. As we can see, there are two dist
regions. ForD.;0.2 pc is constant andb252, while for
D,;0.2 pc varies withD andb251. All these results are
in complete agreement with those of the PCPD model in
pair approximation.

In theN53 level approximation the situation changes,
we can see in Table I: the two distinct regions forD.0
disappear andb252 everywhere as found in the site a
proximation. AtD50, however, the particle density does n
vanish at the transition but goes tor(pc)50.2931. This
means that theN53 level approximation is already capab
of describing the absorbing state that contains frozen,
lated particles. Forp<pc , r2r(pc)}(pc2p)b with b51,
the same critical exponent as the order parameter~the pair
density!; therefore we redefine Eq.~4! now. These results are
also in agreement with those of the PCP model@24–26#.

This kind of singular mean-field behavior persists f
N54 ~Table I, Fig.1! and can be found in theN53,4 level
approximations of the PCPD model as well@23#. These re-
sults suggest that theN52 approximation is an odd one

TABLE I. Summary ofN52,3,4 approximation results.

N52 N53 N54
D pc b b2 pc b b2 pc b b2

0.75 0.5 1 2 0.4597 1 2 0.4146 1 2
0.5 0.5 1 2 0.4 1 2 0.3456 1 2
0.25 0.5 1 2 0.3333 1 2 0.2973 1 2
0.1 0.4074 1 1 0.2975 1 2 0.2771 1 2
0.01 0.3401 1 1 0.2782 1 2 0.2759 1 2
0.00 0.3333 1 1 0.1464 1 1 0.1711 1 1
3-2
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Recent investigations in similar PCP-like models@24,25#
have also shown discrepancies in the singular behavior o
low-level cluster mean-field approximations. One can c
clude that in these models at leastN.2 cluster approxima-
tions are necessary to find a correct mean-field behavior.
probably just a coincidence that theN51 calculation pro-
duced the same results. We shall thereafter ignore theN52
results and refer to theN51,3 scenario as the mean-fie
prediction.

IV. SIMULATION RESULTS

The simulations were started on small lattice sizesL
5100,200) to locate the phase transition point roughly
D50, 0.05, 0.2, 0.5, 0.8. The particle density decayrL(t)
was measured up totmax560 000 Monte Carlo sweep
~MCS! in systems started from fully occupied lattices a
possessing periodic boundary conditions. Throughout
whole papert is measured in units of Monte Carlo sweep
For D50.05 we have not done such a detailed analysis as
other diffusion rates but only checked that the results ar
agreement with the conclusions derived from theD50.2,
0.5, 0.8 data.

Then we continued our survey on larger latticesL5400,
500, 1000, 2000, and determinedpc at each size by analyz
ing the local slopes ofr(t):

ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~11!

~we usedm58). In thet→` limit the critical curve goes to
the exponenta by a straight line, while sub-~super!critical
curves veer down~up!, respectively. Thepc(L) estimates
exhibit an increase withL; hence at the true critical-point th
critical like ae f f curves of a givenL are subcritical. This
excludes the possibility of a finite size scaling study atpc .

A. Dynamical scaling for DÌ0

For the largest system size (L52000) atD50.5 diffusion
rate the local slope analysis results in apc50.439 15(1) and

FIG. 1. N54 cluster mean-field results forr2. The curves cor-
respond toD50, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75~left to
right!. The same kind of convex curvature corresponding tob2

52 can be observed forD.0, while it is different forD50 cor-
responding tob51.
05611
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the correspondinga50.50(2) decay exponent agrees wi
the mean-field value~see Fig. 2!.

We also measured the pair densityr2(t); applying a local
slope analysis similar to Eq.~11! suggests~Fig. 3! the lack of
a phase transition of this quantity atp50.439 15. Instead the
curves veer up, which may lead to differentpc anda2 esti-
mates. Such strange behavior has already been observ
PCPD model simulations@27,28#.

An explanation for this discrepancy was pointed out
Grassberger in the case of the PCPD model@28#. Random
walks in two dimensions are just barely recurrent and sin
particles can diffuse for a very long time before they enco
ter other particles. Therefore, it is natural to expect t
r(t)/r2(t); ln(t) and Fig. 4 shows that this really happens
pc .

Therefore, atD50.5 we can conclude thata2.a.0.5
taking into account logarithmic corrections. This, howev
contradicts the mean-field approximation valuea251.

Similar local slope analyses forD50.2 andD50.8 seem
to imply a50.46(2) anda50.57(2), respectively. First this
raises the idea that the exponents might change continuo
with D as was observed in some one-dimensional PC
simulations@9,18#. Nevertheless, the deviations from 0.5 a
small; hence we tried to fit our data including logarithm
corrections. Logarithmic corrections may really arise ifdc
52 as predicted by bosonic field theory@7#. The precise

FIG. 2. Local slopes of the particle density decay atD50.5
andL52000. Different curves correspond top50.4392, 0.439 16,
0.439 13, 0.4391~from bottom to top!.

FIG. 3. The same as Fig. 2 forr2(t).
3-3
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form of these corrections is not known, however, for t
present case so we have tried several functional de
dences, and found that

$@a1b ln~ t !#/t%a ~12!

is a good choice. As Fig. 5 shows forD50.2 this really
works with exponenta50.507.

Similarly, for D50.8 the same logarithmic formula fittin
resulted ina50.497. The coefficient of the logarithmic co
rection term is negative (b520.2776), while it is positive
for D50.2 (b50.468).

These results suggest that logarithmic corrections to s
ing should work for all cases we investigated, but atD
50.5 they are very small and change sign. Indeed, apply
the same formula for theD50.5, p50.439 13 data we ob
tained a50.496 with b50.000 27 anda51.552. As we
found logarithmic corrections to the particle density dec
and a logarithmic relation betweenr2(t) andr(t), we may
expect even stronger logarithmic corrections to ther2(t)
data. Trying different forms forD50.2,0.5,0.8 we found tha
taking into account ln2(t) correction terms is really necessar
and the best choice is

$@a1b ln~ t !1c ln2~ t !#t%2a. ~13!

This resulted ina250.5007 for D50.2 ~see Fig. 5!, a
50.501 forD50.5, anda50.484 forD50.8. All these re-
sults imply thata5a250.5 independently of the diffusion
rateD. For r(t) this agrees with the mean-field approxim
tions and we do not see a change of universality by vary
D as inferred from theN52 approximation. The critical be
havior of r2(t), however, differs from thea2

MF51 predic-
tion.

B. Static behavior for DÌ0

The pc estimates for different sizes were used to extra
late to the true critical value. Simple linear fitting as a fun

FIG. 4. r(t)/r2(t) and logarithmic fit for critical curves deter
mined by r(t) analysis. The top curves correspond toD50.8,
p50.475, the middle ones toD50.2, p50.412 35, while the bot-
tom ones correspond toD50,5, p50.439 16. Note that the ratio i
smallest atD50.5.
05611
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tion of 1/L resulted in the values given in Table II. For d
termining steady state exponents the densitiesrL(t,p,D) and
r2

L(t,p,D) were followed in the active phase until level-o
values were found to be stable. Averaging was done in
level-off region for 100–1000 surviving samples—tho
with more than one particle@12#. Again at eachp andD we
extrapolated as a function of 1/L to the limL→`rL(`,p,D)
values. The local slope analysis of exponentb,

be f f~e i ,D !5
ln@r~`,e i ,D !#2 ln@r~`,e i 21 ,D !#

ln~e i !2 ln~e i 21!
~14!

~wheree5pc2p), shows that the order parameterr exhibits
b.1 asymptotic scaling atD50.2,0.5,0.8~Fig. 6! although
a correction to scaling can be seen in all cases.

b.1 agrees with the mean-field prediction. Doing t
same analysis forr2 the local slopes seem to extrapolate
b.1.2 for eachD. This is very far from the mean-field valu
b2

MF52 and we do not see any change by varying the dif
sion rate down toD50.05. We have investigated the poss
bility of different logarithmic corrections and found that th
form

r5$e/@a1b ln~e!#%b ~15!

gives very good fitting withb50.96(5) forD50.5 while for
D50.2 andD50.8 ~as in the exponenta2 case! we need to
take into account ln2(e) correction terms to obtain a similarl
good fitting ~see Table II and Fig. 7!. Therefore we con-
cluded that, as in thea case, the steady state exponents

FIG. 5. Logarithmic fit~circles! for r(t) ~upper curve! and with
the form Eq.~13! ~diamonds! for r2(t) ~lower curve! at D50.2 and
p50.412 35.

TABLE II. Summary of simulation results at criticality.

D50.2 D50.5 D50.8

pc 0.4124~1! 0.4394~1! 0.4751~1!

a 0.507~10! 0.496~6! 0.497~10!

a2 0.501~10! 0.501~5! 0.484~15!

b 1.07~10! 1.01~10! 1.07~10!

b2 1.03~8! 0.96~5! 0.95~5!
3-4
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equal:b5b2. Note that we have checked that logarithm
corrections to scaling can also be detected in ther data with
exponentb.1.

C. Data collapse forDÌ0

To test further the possibility of mean-field critical beha
ior we performed finite size scaling on ourrL(t,p,D) data
assuming the mean-field exponents@7# b51, n'51 and the
scaling form

rL~`,e,D !}L2b/n' f ~eL1/n'!. ~16!

As Fig. 8 shows, a good data collapse was obtained fopc
50.4395(1) atD50.5.

Similarly, the scaling form

rL~ t,e,D !}t2b/n uug~ ten uu! ~17!

(a5b/n uu) can be checked nearpc , assuming the mean-fiel
values@7# b51 andn uu52. For the largest size (L52000) at
D50.5 the best collapse of curves corresponding top
50.438, 0.4382, 0.4384, 0.4386, 0.4388 was obtained

FIG. 6. Effective order parameter exponent results. Circles
respond toD50.2, diamonds toD50.5, and squares toD50.8
data.

FIG. 7. Logarithmic fitting tor2(`) at D50.5 using the form
Eq. ~15!. The coefficients area50.112, b50.01, andb50.96(5).
05611
or

pc50.4394(1)~see Fig. 9!. This agrees well with previous
pc estimates within the margin of numerical accuracy.

D. The DÄ0 case

As explained above, we expect this model to exhibit
11)-dimensional DP universality because for the pair d
sity the conditions of the DP hypothesis@2,3# are satisfied.
Indeed, atpc50.3709(1) we found that the decay expone
of pairs is a250.45(1) and the steady state density a
proaches zero with the scaling exponentb250.582(1) in
agreement with the estimates for this classa50.4505(10)
and b50.583(14) @21#. At the critical point the density of
isolated particles takes a nonzero value, usually called
natural densityr(pc).0.135. In@26# we showed that in the
case of the PCP and another 1D model exhibiting infinit
many absorbing states the nonorder field follows the sca
of the order parameter field. Here we found that the to
density shows a singular behavior,

r~p!2r~pc!}~pc2p!b, ~18!

r- FIG. 8. Finite size data collapse according to scaling form E
~16! for L5200, 400, 500, 1000, 2000. Different symbols deno
data forp50.436, 0.437, 0.4375, 0.438, 0.4382, 0.4384, 0.4386

FIG. 9. Data collapse according to scaling form Eq.~17! at
D50.5. Different curves correspond to data atp50.438, 0.4382,
0.4384, 0.4386, 0.4388.
3-5
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with the redefined exponentb50.60(2), agreeing with that
of the DP class within the margin of numerical accuracy.

E. Scaling in the inactive phase

According to the bosonic field theory@7# in the inactive
phase theA1A→B reaction governs the particle densi
decay. This process was solved exactly by Lee@29#, who
predicted the following late time scaling behavior ind52:

r~ t !5
1

8pD
ln t/t1O~1/t !. ~19!

We measuredr(t) at p50.45 andD50.5 in anL52000
system up totmax533105 MCS. As Fig. 10 shows, for in-
termediate times the density decays faster than this po
law in agreement with results for the PCPD@28# but later
crosses over to the expected Eq.~19! behavior with ampli-
tude 0.078(2) and with a 4.46/t correction to scaling term.

Unlike what we found at the critical point~see Sec. IV B!,
r2(t) decays faster thanr(t) in the absorbing phase. Th
long time behavior seems to ber2}t22, which agrees with
the mean-field prediction.

V. CONCLUSIONS

We have investigated the phase transition of a tw
dimensional binary spreading model exhibiting parity co
servation. In what concerns cluster mean-field approac
the results are similar to those of the PCPD model at
corresponding level of approximation@6,23#. The N52 re-
sults suggest two different universality classes depending
the diffusion strength. Higher (N53,4) order cluster mean
field calculations show a single universality class charac
ized byb51 anda51/2. Comparing these with other rece
results for PCP-like models and with the simulations,
believe that theN52 case yields spurious results—althou

FIG. 10. Density decay in the inactive phase. For large tim
(t.83104 MCS! we foundr(t)5@4.4610.078(2)ln t#/t behavior
by fitting data.
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two universality classes were apparently observed in a st
of the one-dimensional PCPD@9#—and soN.2 cluster ap-
proximations are necessary to describe the mean-field si
larity correctly. This is not surprising and was already fou
in similar models@24,25#. Note that in both theN53 and
N54 approximations,pc seems to have a discontinuity o
approachingD50. This behavior may be the subject of fu
ther studies.

We performed extensive and detailed simulations alo
the phase transition line and found a single universality cl
with the order parameter exponentsb51 anda50.5 for all
D.0. Logarithmic corrections to scaling were detected t
are weakest atD50.5. Lacking theoretical prediction, w
have selected the best logarithmic fitting forms taking in
account up toO(ln2) terms, but we cannot rule out the po
sibility of other forms of logarithmic correction. Scalin
function analysis confirmed then'52 andn uu51 mean-field
values. This seems to indicate that the critical dimension
dc52 as predicted by the bosonic field theory. In the inact
region, the decay of particle density at large times was fou
to agree with an exact prediction@29#.

The pair densityr2 for p<pc ~where the bosonic field
theory breaks down! was shown to exhibit the same singul
behavior as the order parameter, apart from a logarith
ratio. Simulation results of the PCPD model@28,10# found
indications of similar behavior. The reason why the mea
field approximation fails to describe the singular behavior
r2 is not yet clear to us but in the two-component descript
of the model it indicates strong coupling between pairs a
particles~similarly to other models@5,31,30#!. In the inactive
region, however,r2 andr scale differently. At theD50 end
point of the transition line we found (211)-dimensional DP
critical behavior ofr2 with infinitely many frozen absorbing
states, similar to the PCP model.

We have found identical predictions for the present a
the PCPD model within the mean field, which seem to
confirmed by our simulations—and also by prelimina
simulations for the 22d PCPD@27,28#. One thus concludes
that it is very likely that parity conservation is irrelevant fo
this transition, as in the one-dimensional case@15# and in
certain models with exclusion@32#. Further renormalization
group studies of these systems are necessary for a pr
justification of these results.
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@16# G. Ódor, Phys. Rev. E65, 026121~2002!.
05611
e

@17# H. Hinrichsen, Physica A291, 275 ~2001!.
@18# J. D. Noh and H. Park, e-print cond-mat/0109516.
@19# H. A. Gutowitz, J. D. Victor, and B. W. Knight, Physica D28,

18 ~1987!.
@20# R. Dickman, Phys. Rev. A38, 2588~1988!.
@21# C. A. Voigt and R. M. Ziff, Phys. Rev. E56, R6241~1997!.
@22# R. Dickman, Phys. Rev. E53, 2223~1996!.
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