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Phase transition of a two-dimensional binary spreading model
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We investigated the phase transition behavior of a binary spreading process in two dimensions for different
particle diffusion strengthsY). We found thalN>2 cluster mean-field approximations must be considered to
get consistent singular behavior. TNe= 3,4 approximations result in a continuous phase transition belonging
to a single universality class along tBee (0,1) phase transition line. Large scale simulations of the particle
density confirmed mean-field scaling behavior with logarithmic corrections. This is interpreted as numerical
evidence supporting the bosonic field theoretical prediction that the upper critical dimension in this model is
d.=2. The pair density scales in a similar way but with an additional logarithmic factor to the order parameter.
At the D=0 end point of the transition line we found directed percolation criticality.
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I. INTRODUCTION different behaviof 9], parity conserving clag$], mean-field
behavior, diffusion-dependent exponents. Some related mod-

The study of nonequilibrium phase transitions in system#ls were also studield 3—18 with the aim of identifying the
with absorbing phases is an active area of research in statigélevant features that determine the critical properties. The

tical physics with applications in various other fields such agnatter is not yet fully clarified, but it seems most likely that

chemistry, biology, and social sciendds. The classification thiS Systém belongs to a distinct, not previously encountered,
4 gy deg niversality class. Par&t al.[15] have also pointed out that

of the types of phase transition found in these systems int . i : .
b b Y Ewe binary character of the particle creation mechanism,

universality classes is, nevertheless, still an incomplete tas Sather than parity conservation, might be the crucial factor
The directed percolatiofDP) universality class is the most determining the type of critical behavior of the PCPD.

common nonequilibrium universality cla3e,3]. Directed Higher dimensional studies of PCPD-like models are thus

percolatior) was indeed found to descri.be the Cf“ica' beha,vhecessary in order to clarify their universal properties and

ior of a wide range of systems, despite the differences ify 5 contribute to a full understanding of nonequilibrium

their microscopic dynamic rules. However, the presence ofpase transitions.

some conservation laws and/or symmetries in the dynamics | the present work we studied a two-dimensional model

has been found to lead to other universality clagdés where particle diffusion competes with binary creation and
The pair contact proces®CP [5] is one of the models  annihilation of pairs of particles. In its nondiffusive limit,

whose(steady statecritical properties belong to the DP uni- this parity-conserving version of the PCPD allows for an

versality class. If the model is generalized to include singleinterpretation in terms of anary process ofparticle pairs

particle diffusion(PCPD or annihilation/fission modg,7]),  The model is described in the following section. Cluster

a qualitatively distinct situation arises since states with onlymean-field studies are presented in Sec. Ill and Monte Carlo

isolated particles are no longer frozen and the question hasimulations are discussed in Sec. IV. Finally we summarize

been raised as to whether this would modify the universalityand discuss our results.

class. A field theoretical study of the annihilation/fission

model was presented long agd. Unfortunately, it relies on Il. THE MODEL

a perturbative renormalization group analysis which breaks

down in spatial dimensiord<2 so that the active phase and b

the phase transition are inaccessible to this study. The UPPSFe then performed sequentially. A particle is selected at ran-

ey e e o e v Tt lom. i) i provabity D 15 moved to iandortly
models and Monte Carlo simulations. A fermionic field chosen empty neighbor site; with the complementary prob-

. . o ability, and provided the particle has at least one occupied
theory is not available but it is expected to lead 1 ; - . o . '
[8]—t¥1erefore mean-field predictionz with some Iogg?ithmicnelghbo.r.’. thertii) the two particles annihilate with probabil
corrections, would be seen th=1 if thé latter is the correct ity p or (iii) with probability 1~ p two particles are added at
theory, ' vacant neighbors of the initial particle. The selection of

Monte Carlo, coherent anoma9,10], and density matrix neighbors is always done with equal probabilities; the updat-

o . ing is aborted and another particle is selected, if the chosen
renormalization groufDMRG) studies(6,11,13 of the 1 sites are not empty/occupied as required by the process. In

—d PC_PD _model prqved to be rather_hard due t_o very longreaction-diffusion language one has
relaxation times and important corrections to scaling. Several
hypotheses have been put forward in order to classify its D p(1-D) (1-p)(1-D)

critical behavior: single typé¢6,11] versus two regions of AD—TA, 2A — I, 2A — 4A. (1

The sites of a square lattice of sitleare either occupied
a particle(1) or empty(0). The following dynamic rules
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It is clear that, in the absence of particle diffusidd=0), TABLE I. Summary ofN=2,3,4 approximation results.

only sites that belong to a pair of occupied neighbors are

active. In terms of pairs—taken as particle doublets—we N=2 N=3 N=4

have a unary process where doublets are destroyed gb rate D Pe B B Pe B B2 P B B2
or create new doublets at rate-p; the number of offspring 05 1 2 04597 1 2 04146 1 2
is greater than or equal to 2—because new pairs may also bg 0'5 1 2 '0 4 1 2 o0 '3456 1 2
formed with next nearest neighbor particles—and parity ofO '25 0'5 1 2 o 3'333 1 2 0'2973 1 2
the number of doublets is not conserved. This is similar to”’ ' ’ '

the PCH22] and one expects to see a phase transition, in the A 04074 1102975 1 2 02771 12
DP universality class, between an active phase with a finitgd 01 0.3401 1 1 02782 1 2 02759 1 2
density of pairs(at low p) and an absorbing phase without 000 03333 1 1 01464 1 1 01711 1 1

pairs (for p>p.).

When particle diffusion is included, one has a qualita- - .
tively different situation, since configurations with only par- All these exponents coincide with tho_se fqund for the PCPD
ticles without neighbors are no longer absorbing—the onl)}m’del[(ﬂ at the same level .Of approximation. -
absorbing states are the empty lattice and the configurations In the Pa',r, (Nfz) approxmatlon., the density of “1 ’@
with a single particle. There is parity conservation in termsand the “11 pair density p,) are md_ependent quantities.
of particles and the creation and annihilation mechanisms argne can easily check that the evolution of particles can be
binary. The nature of the phase transition, expected to Occu?xpressed as
at some valug@.(D), is investigated below.

dp
5t~ 2p(1-D)py+2(1-D)(1-p)
IIl. CLUSTER MEAN-FIELD CALCULATIONS
We performedN-cluster mean-field calculatiod9,20) X polp— )1—ZP+P2 ©
for this model. Since the details of the dynamics will not PP~ P2 p(1—p)

influence the values of the mean-field critical indices, we

have considered a simpler one-dimensional version of thevhile the evolution of pairs

model where the creation takes place at the nearest and next-

nearest sites to one side of the parent particle. dps 2p,+p pa—p
At the site (N=1) level, the evolution of the particle —i = P(2=D)p; —ZD(P—Pz)m

densityp (denoted byn in [6]) can be expressed as

2

+(1-D)(1—p)p2(p—p2)

dp
—t = 2pp°+2(1-p)p*(1-p)? 2 2 p—p,
X(1—2p+p2)?. (10)
which has the stationary solution p(1=p)
p—1+ W Owing to the nonlinearities, we could not solve these equa-

p(o0)= 1 (3) tions analytically and had to look for numerical solutions.

P The critical indices thus obtained at different diffusion rates

with p.=1/2. The pair density, (c in the notation of6]) is D are shown in Table I. As we can see, there are two distinct
c )

just the square op at this level. Forp=p, the densities €dions. ForD>~0.2 p is constant ang8,=2, while for

behave as D<~0.2 p. varies withD and8,=1. All these results are
in complete agreement with those of the PCPD model in the
p(2)=(p.—p)~, (4)  pair approximation.
In the N= 3 level approximation the situation changes, as
pa(®)x(pe—p)Pe, (5) we can see in Table I: the two distinct regions o0

disappear angB,=2 everywhere as found in the site ap-

with B=1 andB,=2 leading order singularities. At the criti- proximation. AtD =0, however, the particle density does not

cal point vanish at the transition but goes jg(p.)=0.2931. This
op(p=1/2) means that th&l=3 level approximation is already capable
P p&: =2(pl2—1)p®, (6)  of describing the absorbing state that contains frozen, iso-

lated particles. Fop<p., p—p(pc)*(p.— p)? with B=1,
the same critical exponent as the order paramgkter pair

which implies that the leading order scaling is density; therefore we redefine E¢4) now. These results are

p(D)oct™%,  py(t)oct— 7 also in agreement with those of the PCP md@dl-26.
b2 ’ This kind of singular mean-field behavior persists for
with a=1/2 anda,=1, while in the absorbing phase N=4 (Table I, Fig.1 and can be found in thi=3,4 level
approximations of the PCPD model as wigB]. These re-
p(t)et™t  py(t)oct™2, (8)  sults suggest that thel=2 approximation is an odd one.
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FIG. 1. N=4 cluster mean-field results far,. The curves cor- FIG. 2. Local slopes of the particle density decayDat 0.5
respond toD=0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7sft to andL =2000. Different curves correspond pe=0.4392, 0.439 16,
right). The same kind of convex curvature correspondingdto  0.439 13, 0.4391from bottom to top.
=2 can be observed fdb >0, while it is different forD=0 cor-

responding tg8=1. the correspondingr=0.50(2) decay exponent agrees with

the mean-field valuésee Fig. 2

Recent investigations in similar PCP-like modé¢4,25 We also measured the pair density(t); applying a local
have also shown discrepancies in the singular behavior of thelope analysis similar to E411) suggestsFig. 3) the lack of
low-level cluster mean-field approximations. One can cona phase transition of this quantity g 0.439 15. Instead the
clude that in these models at ledét-2 cluster approxima- Curves veer up, which may lead to differgnt anda, esti-
tions are necessary to find a correct mean-field behavior. It i§1ates. Such strange behavior has already been observed in
probably just a coincidence that tie=1 calculation pro- PCPD model simulationg27,28).

duced the same results. We shall thereafter ignoréNthe@ An explanation for this discrepancy was pointed out by
results and refer to th&l=1,3 scenario as the mean-field Grassberger in the case of the PCPD mda8|. Random

prediction. walks in two dimensions are just barely recurrent and single

particles can diffuse for a very long time before they encoun-

IV. SIMULATION RESULTS ter other particles. Therefore, it is natural to expect that

p(t)/ p,(t) ~In(t) and Fig. 4 shows that this really happens at
The simulations were started on small lattice sizes ( p_.

=100,200) to locate the phase transition point roughly at Therefore, atb=0.5 we can conclude that,=a=0.5
D=0, 0.05, 0.2, 0.5, 0.8. The particle density deg&yt)  taking into account logarithmic corrections. This, however,
was measured up tdy,,=60000 Monte Carlo sweeps contradicts the mean-field approximation vahse=1.
(MCS) in systems started from fully occupied lattices and  Similar local slope analyses f@=0.2 andD =0.8 seem
possessing p.eriodic boundary _conditions. Throughout thgy imply «=0.46(2) ande=0.572), respectively. First this
whole papett is measured in units of Monte Carlo sweeps.rajses the idea that the exponents might change continuously
For D =0.05 we have not done such a detailed analysis as fQNnh D as was observed in some one-dimensional PCPD
other diffusion rates but only checked that the results are igimulations[9,18]. Nevertheless, the deviations from 0.5 are
agreement with the conclusions derived from Be=0.2,  small; hence we tried to fit our data including logarithmic

05, 0.8 data. _ corrections. Logarithmic corrections may really arisedf
Then we continued our survey on larger lattites 400, =2 as predicted by bosonic field theofy]. The precise
500, 1000, 2000, and determingd at each size by analyz- .
ing the local slopes of(t): 051 |
—In[p(t)/p(t/m)] 083 |
agsf(t)= 11
eff( ) |n(m) ( ) oss
(we usedm=8). In thet— o limit the critical curve goes to 057
the exponent by a straight line, while subtsupejcritical g
curves veer dowr(up), respectively. Thep (L) estimates 0.59
exhibit an increase with; hence at the true critical-point the ost |
critical like aq¢s curves of a giverL are subcritical. This '
excludes the possibility of a finite size scaling studyat 063 [
A. Dynamical scaling for D>0 085 0.0002 0.0004 0.0006
For the largest system size £ 2000) atD =0.5 diffusion
rate the local slope analysis results ipa= 0.439 15(1) and FIG. 3. The same as Fig. 2 fen(t).
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FIG. 4. p(t)/p,(t) and logarithmic fit for critical curves deter- FIG. 5. Logarithmic fit(circles for p(t) (upper curvgand with
mined by p(t) analysis. The top curves correspond Bo=0.8,  the form Eq.(13) (diamonds for p,(t) (lower curve atD =0.2 and
p=0.475, the middle ones ©=0.2, p=0.412 35, while the bot- P=0.41235.

tom ones correspond @=0,5, p=0.439 16. Note that the ratio is . ] ) )
smallest aD =0.5. tion of 1L resulted in the values given in Table Il. For de-

termining steady state exponents the densjttgs, p,D) and
form of these corrections is not known, however, for thep%(t,p,D) were followed in the active phase until level-off
present case so we have tried several functional depewalues were found to be stable. Averaging was done in the

dences, and found that level-off region for 100-1000 surviving samples—those
. with more than one particlgl2]. Again at eactp andD we
{la+bIn(t)]/t} (12 extrapolated as a function ofL1to the lim_...p(c,p,D)

. . . , values. The local slope analysis of expongnt
is a good choice. As Fig. 5 shows f@=0.2 this really

works with exponentv=0.507. In[p(ce,€,D)]—In[p(,€_1,D)]
Similarly, for D= 0.8 the same logarithmic formula fitting Beti(€,D)= In(e)=In(e, 1)

resulted ina=0.497. The coefficient of the logarithmic cor- ' ot

rection term is negativeb(= —0.2776), while it is positive  (wheree=p.— p), shows that the order parameteexhibits

(14)

for D=0.2 (b=0.468). o _ ~1 asymptotic scaling @ =0.2,0.5,0.8(Fig. 6) although
These results suggest that logarithmic corrections to scal correction to scaling can be seen in all cases.
ing should work for all cases we investigated, butDat B=1 agrees with the mean-field prediction. Doing the

=0.5 they are very small and change sign. Indeed, applyingame analysis fop, the local slopes seem to extrapolate to
the same formula for th® =0.5, p=0.439 13 data we ob- 3~1 2 for eactD. This is very far from the mean-field value

tained a=0496 with b=0000 27 anda:- 1.552. AS we ﬁg/”:zz and we do not see any Change by Varying the diffu_
found logarithmic corrections to the particle density decaygign rate down td = 0.05. We have investigated the possi-

and a logarithmic relation betwegny(t) andp(t), we may  pjjity of different logarithmic corrections and found that the
expect even stronger logarithmic corrections to h€t) form

data. Trying different forms fob =0.2,0.5,0.8 we found that
taking into account Iﬁt) correction terms is really necessary, p={el[a+bln(e)]}? (15)
and the best choice is
) . gives very good fitting with3=0.96(5) forD = 0.5 while for
{[a+DbIn(t)+clIn*(t)]t} . (13 p=0.2andD=0.8 (as in the exponent, case we need to
. . , take into account ff{e) correction terms to obtain a similarly
This resulted ina,=0.5007 forD=0.2 (see Fig. 3 « 4504 fitting (see Table Il and Fig. )7 Therefore we con-

=0.501 forD=0.5, anda=0.484 forD=0.8. All these re- o qeq that, as in the case, the steady state exponents are
sults imply thatae= «,=0.5 independently of the diffusion

rate D. For p(t) this agrees with the mean-field approxima- TABLE Il. Summary of simulation results at criticality.

tions and we do not see a change of universality by varying

D as inferred from théN=2 approximation. The critical be- D=0.2 D=05 D=0.8

havior of p,(t), however, differs from ther)' =1 predic-

tion. Pe 0.41241) 0.43941) 0.47511)
o 0.50710) 0.4966) 0.497110)

B. Static behavior for D>0 @2 0.50410) 0.501(5) 0.48415)
B 1.0710) 1.01(10) 1.0710)
The p. estimates for different sizes were used to extrapo- g, 1.038) 0.9605) 0.9505)

late to the true critical value. Simple linear fitting as a func-
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FIG. 6. Effective order parameter exponent results. Circles cor-

respond toD=0.2, diamonds tdD=0.5, and squares tD=0.8
data.
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FIG. 8. Finite size data collapse according to scaling form Eg.

(16) for L=200, 400, 500, 1000, 2000. Different symbols denote
data forp=0.436, 0.437, 0.4375, 0.438, 0.4382, 0.4384, 0.4386.

equal: B=3,. Note that we have checked that logarithmic n_=0.4394(1)(see Fig. 9. This agrees well with previous

corrections to scaling can also be detected ingthita with
exponentB=1.

C. Data collapse forD>0

To test further the possibility of mean-field critical behav-
ior we performed finite size scaling on opk(t,p,D) data
assuming the mean-field exponefit$ =1, v, =1 and the
scaling form

p(,e,D)xL (el ML), (16)
As Fig. 8 shows, a good data collapse was obtainecpfor
=0.4395(1) atD=0.5.

Similarly, the scaling form

pt(t,€,D)oct FlVig(te”ll) (17
(a=pBlv)) can be checked negg, assuming the mean-field
values[7] =1 andy=2. For the largest size (=2000) at
D=0.5 the best collapse of curves correspondingpto

p. estimates within the margin of numerical accuracy.

D. The D=0 case

As explained above, we expect this model to exhibit (2
+1)-dimensional DP universality because for the pair den-
sity the conditions of the DP hypothedid,3] are satisfied.
Indeed, atp.=0.3709(1) we found that the decay exponent
of pairs is a,=0.45(1) and the steady state density ap-
proaches zero with the scaling expongdy=0.582(1) in
agreement with the estimates for this class 0.4505(10)
and 8=0.583(14)[21]. At the critical point the density of
isolated particles takes a nonzero value, usually called the
natural densityp(p.)=0.135. In[26] we showed that in the
case of the PCP and another 1D model exhibiting infinitely
many absorbing states the nonorder field follows the scaling
of the order parameter field. Here we found that the total
density shows a singular behavior,

(18

p(P)—p(Pe)*(pc—P)*,

=0.438, 0.4382, 0.4384, 0.4386, 0.4388 was obtained for

107" b

P,

107 |

FIG. 7. Logarithmic fitting top,(%) at D=0.5 using the form
Eq. (15). The coefficients ara=0.112, b=0.01, and3=0.965).

0.5
pt

10° 1 o 107" 10°

te’

FIG. 9. Data collapse according to scaling form E7) at
D=0.5. Different curves correspond to datapat 0.438, 0.4382,
0.4384, 0.4386, 0.4388.
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two universality classes were apparently observed in a study
of the one-dimensional PCP@]—and soN>2 cluster ap-
proximations are necessary to describe the mean-field singu-
larity correctly. This is not surprising and was already found
in similar models[24,25. Note that in both theN=3 and
N=4 approximationsp, seems to have a discontinuity on
approachind =0. This behavior may be the subject of fur-
ther studies.

We performed extensive and detailed simulations along
the phase transition line and found a single universality class
with the order parameter exponemtss 1 anda= 0.5 for all
D>0. Logarithmic corrections to scaling were detected that
are weakest aD=0.5. Lacking theoretical prediction, we
have selected the best logarithmic fitting forms taking into

FIG. 10. Density decay in the inactive phase. For large timesaccount up tog(mZ) terms, but we cannot rule out the pos-

(t>8x10* MCS) we foundp(t) =[4.46+0.07§2)Int]/t behavior
by fitting data.

with the redefined exponent=0.6(0(2), agreeing with that
of the DP class within the margin of numerical accuracy.

E. Scaling in the inactive phase

According to the bosonic field theofy7] in the inactive
phase theA+A—J reaction governs the particle density
decay. This process was solved exactly by [2€], who
predicted the following late time scaling behaviords-2:

p(t)= %muuoun). (19)

We measurep(t) at p=0.45 andD=0.5 in anL=2000
system up td,,,,=3x10° MCS. As Fig. 10 shows, for in-

sibility of other forms of logarithmic correction. Scaling
function analysis confirmed the, =2 andy; =1 mean-field
values. This seems to indicate that the critical dimension is
d.=2 as predicted by the bosonic field theory. In the inactive
region, the decay of particle density at large times was found
to agree with an exact predictig29].

The pair densityp, for p<p. (where the bosonic field
theory breaks downwas shown to exhibit the same singular
behavior as the order parameter, apart from a logarithmic
ratio. Simulation results of the PCPD modéei8,10 found
indications of similar behavior. The reason why the mean-
field approximation fails to describe the singular behavior of
p» is not yet clear to us but in the two-component description
of the model it indicates strong coupling between pairs and
particles(similarly to other model$5,31,3@). In the inactive
region, howeverp, andp scale differently. At thé&d=0 end
point of the transition line we found (21)-dimensional DP
critical behavior ofp, with infinitely many frozen absorbing

termediate times the density decays faster than this powestates, similar to the PCP model.

law in agreement with results for the PCHRB] but later
crosses over to the expected E#fj9) behavior with ampli-
tude 0.078(2) and with a 4.46¢orrection to scaling term.

Unlike what we found at the critical poitisee Sec. IV B
po(t) decays faster thap(t) in the absorbing phase. The
long time behavior seems to heot™2, which agrees with
the mean-field prediction.

V. CONCLUSIONS

We have found identical predictions for the present and
the PCPD model within the mean field, which seem to be
confirmed by our simulations—and also by preliminary
simulations for the 2d PCPD[27,28. One thus concludes
that it is very likely that parity conservation is irrelevant for
this transition, as in the one-dimensional c4%8] and in
certain models with exclusiof82]. Further renormalization
group studies of these systems are necessary for a proper
justification of these results.

We have investigated the phase transition of a two-

dimensional binary spreading model exhibiting parity con-
servation. In what concerns cluster mean-field approache
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